
django-translated-fields Documentation
Release 0.12-13-g86a49cc

Feinheit AG

May 30, 2023

Contents

1 Installation and usage 3

2 Basic usage 5

3 Changing field attributes per language 7

4 Overriding attribute access (defaults, fallbacks) 9

5 TranslatedField instance API 11

6 Using a different set of languages 13

7 Translated attributes without model field creation 15

8 Model admin support 17

9 Forms 19

10 Other features 21

11 Change log 23
11.1 Next version . 23
11.2 0.12 (2022-04-08) . 23
11.3 0.11 (2021-04-12) . 24
11.4 0.10 (2020-07-27) . 24
11.5 0.9 (2020-05-14) . 24
11.6 0.8 (2019-06-26) . 24
11.7 0.7 (2018-10-17) . 25
11.8 0.6 (2018-10-17) . 25
11.9 0.5 (2018-06-14) . 25
11.10 0.4 (2018-06-14) . 25
11.11 0.3 (2018-05-03) . 25
11.12 0.2 (2018-04-30) . 26
11.13 0.1 (2018-04-18) . 26

i

ii

django-translated-fields Documentation, Release 0.12-13-g86a49cc

Django model translation without magic-inflicted pain.

Contents 1

https://github.com/matthiask/django-translated-fields/

django-translated-fields Documentation, Release 0.12-13-g86a49cc

2 Contents

CHAPTER 1

Installation and usage

After installing django-translated-fields in your Python environment all you have to do is define
LANGUAGES in your settings and add translated fields to your models:

from django.db import models
from django.utils.translation import gettext_lazy as _

from translated_fields import TranslatedField

class Question(models.Model):
question = TranslatedField(

models.CharField(_("question"), max_length=200),
)
answer = TranslatedField(

models.CharField(_("answer"), max_length=200),
)

def __str__(self):
return self.question

3

django-translated-fields Documentation, Release 0.12-13-g86a49cc

4 Chapter 1. Installation and usage

CHAPTER 2

Basic usage

Model fields are automatically created from the field passed to TranslatedField, one field per language. For
example, with LANGUAGES = [("en", "English"), ("de", "German"), ("fr", "French")],
the following list of fields would be created: question_en, question_de, question_fr, answer_en,
answer_de, and answer_fr.

This implies that when changing LANGUAGES you’ll have to run makemigrations and migrate too.

No question or answer model field is actually created. The TranslatedField instance is a descriptor which
by default acts as a property for the current language’s field:

from django.utils.translation import override

question = Question(
question_en="How are you?",
question_de="Wie geht es Dir?",
question_fr="Ça va?",

)

The default getter automatically returns the value
in the current language:
with override("en"):

assert question.question == "How are you?"

with override("de"):
assert question.question == "Wie geht es Dir?"

The default setter can also be used to set the value
in the current language:
with override("fr"):

question.question = "Comment vas-tu?"

assert question.question_fr == "Comment vas-tu?"

TranslatedField has a fields attribute that returns a list of all the language fields created.

5

https://docs.python.org/3/howto/descriptor.html

django-translated-fields Documentation, Release 0.12-13-g86a49cc

assert Question.answer.fields == ["answer_en", "answer_de", "answer_fr"]

For more attributes look at the ‘‘TranslatedField‘‘ instance API section below.

question and answer can only be used with model instances, they do not exist in the database. If you want to use
queryset methods which reference individual translated fields you have to use language-specific field names yourself.
If you wanted to fetch only the english question and answer fields you could do this as follows:

questions = Question.objects.values_list("question_en", "answer_en")

Or better yet, using the to_attribute helper which automatically uses the active language (if you don’t pass a
specific language code as its second argument):

from django.utils.translation import override
from translated_fields import to_attribute

with override("en"):
questions = Question.objects.values_list(

to_attribute("question"), to_attribute("answer")
)

6 Chapter 2. Basic usage

CHAPTER 3

Changing field attributes per language

It is sometimes useful to have slightly differing model fields per language, e.g. for making the primary language
mandatory. This can be achieved by passing a dictionary with keyword arguments per language as the second positional
argument to TranslatedField.

For example, if you add a language to LANGUAGES when a site is already running, it might be useful to make the new
language non-mandatory to simplify editing already existing data through Django’s administration interface.

The following example adds blank=True to the spanish field:

from translated_fields import TranslatedField

class Question(models.Model):
question = TranslatedField(

models.CharField(_("question"), max_length=200),
{"es": {"blank": True}},

)

7

django-translated-fields Documentation, Release 0.12-13-g86a49cc

8 Chapter 3. Changing field attributes per language

CHAPTER 4

Overriding attribute access (defaults, fallbacks)

There are no default values or fallbacks, only a wrapped attribute access. The default attribute getter and setter
functions simply return or set the field for the current language (as returned by django.utils.translation.
get_language). The default getter falls back to the first language of the field in case get_language() returns
None. Apart from that the default getter has no safetyfeatures and may raise an AttributeError and the setter
might set an attribute on the model instance not related to a model field.

Both getters and setters can be overridden by specifying your own attrgetter and attrsetter functions. E.g.
you may want to specify a fallback to the default language (and at the same time allow leaving other languages’ fields
empty):

from django.conf import settings
from translated_fields import TranslatedField, to_attribute

def fallback_to_default(name, field):
def getter(self):

return getattr(
self,
to_attribute(name),

) or getattr(
self,
First language acts as fallback:
to_attribute(name, settings.LANGUAGES[0][0]),

)
return getter

class Question(models.Model):
question = TranslatedField(

models.CharField(_("question"), max_length=200, blank=True),
{settings.LANGUAGES[0][0]: {"blank": False}},
attrgetter=fallback_to_default,

)

Maybe you’re using locales with region codes such as fr-fr where you want to fall back to the language without a
region code. An example attrgetter implementation follows:

9

django-translated-fields Documentation, Release 0.12-13-g86a49cc

from translated_fields import to_attribute

def fallback_to_all_regions(name, field):
def getter(self):

value = getattr(self, to_attribute(name), None)
if value:

return value
return getattr(self, to_attribute(name, get_language().split("-")[0]))

return getter

A custom attrsetter which always sets all fields follows (probably not very useful, but hopefully instructive):

def set_all_fields(name, field):
def setter(self, value):

for field in field.fields:
setattr(self, field, value)

return setter

10 Chapter 4. Overriding attribute access (defaults, fallbacks)

CHAPTER 5

TranslatedField instance API

The TranslatedField descriptor has a few useful attributes (sticking with the model and field from the examples
above):

• Question.question.fields contains the names of all automatically generated fields, e.g.
["question_en", "question_...", ...].

• Question.question.languages is the list of language codes.

• Question.question.short_description is set to the verbose_name of the base field, so that the
translatable attribute can be nicely used e.g. in ModelAdmin.list_display.

11

django-translated-fields Documentation, Release 0.12-13-g86a49cc

12 Chapter 5. TranslatedField instance API

CHAPTER 6

Using a different set of languages

It is also possible to override the list of language codes used, for example if you want to translate a sub- or superset
of settings.LANGUAGES. Combined with attrgetter and attrsetter there is nothing stopping you from
using this field for a different kind of translations, not necessarily bound to django.utils.translation or
even languages at all.

13

django-translated-fields Documentation, Release 0.12-13-g86a49cc

14 Chapter 6. Using a different set of languages

CHAPTER 7

Translated attributes without model field creation

If model field creation is not desired, you may also use the translated_attributes class decorator. This only
creates the attribute getter property:

from translated_fields import translated_attributes

@translated_attributes("attribute", "anything", ...)
class Test(object):

attribute_en = "some value"
attribute_de = "some other value"

15

django-translated-fields Documentation, Release 0.12-13-g86a49cc

16 Chapter 7. Translated attributes without model field creation

CHAPTER 8

Model admin support

The TranslatedFieldAdmin class adds the respective language to the label of individual fields. Instead of three
fields named “Question” you’ll get the fields “Question [en]”, “Question [de]” and “Question [fr]”. It intentionally
offers no functionality except for modifying the label of fields:

from django.contrib import admin
from translated_fields import TranslatedFieldAdmin
from .models import Question

@admin.register(Question)
class QuestionAdmin(TranslatedFieldAdmin, admin.ModelAdmin):

pass

For inlines:
class SomeInline(TranslatedFieldAdmin, admin.StackedInline):
...

As mentioned above, the fields attribute on the TranslatedField instance contains the list of generated fields.
This may be useful if you want to customize various aspects of the ModelAdmin subclass. An example showing
various techniques follows:

from django.contrib import admin
from django.utils.translation import gettext_lazy as _
from translated_fields import TranslatedFieldAdmin, to_attribute
from .models import Question

@admin.register(Question)
class QuestionAdmin(TranslatedFieldAdmin, admin.ModelAdmin):

Pack question and answer fields into their own fieldsets:
fieldsets = [

(_("question"), {"fields": Question.question.fields}),
(_("answer"), {"fields": Question.answer.fields}),

]

Show all fields in the changelist:

(continues on next page)

17

django-translated-fields Documentation, Release 0.12-13-g86a49cc

(continued from previous page)

list_display = [

*Question.question.fields,

*Question.answer.fields
]

Order by current language's question field:
def get_ordering(self, request):

return [to_attribute("question")]

Note: It’s strongly recommended to set the verbose_name of fields when using TranslatedFieldAdmin, the
first argument of most model fields. Otherwise, you’ll get duplicated languages, e.g. “Question en [en]”.

18 Chapter 8. Model admin support

CHAPTER 9

Forms

django-translated-fields provides a helper when you want form fields’ labels to contain the language code. If this
sounds useful to you do this:

from django import forms
from translated_fields.utils import language_code_formfield_callback
from .models import Question

class QuestionForm(forms.ModelForm):

class Meta:
model = Question
fields = [

*Question.question.fields,

*Question.answer.fields
]
Supported starting with Django 4.2: (Previously it was supported
directly on the modelform class, but only as an implementation
detail https://code.djangoproject.com/ticket/26456)
formfield_callback = language_code_formfield_callback

You may also globally configure language code labels to be shown within a block:

from translated_fields import show_language_code

def view(request):
form = ...
with show_language_code(True):

return render(request, "...", {"form": form})

Please note that the response has to be rendered within the show_language_code block. This doesn’t happen
automatically when using Django’s TemplateResponse objects.

19

django-translated-fields Documentation, Release 0.12-13-g86a49cc

20 Chapter 9. Forms

CHAPTER 10

Other features

There is no support for automatically referencing the current language’s field in queries or automatically adding fields
to admin fieldsets and whatnot. The code required for these features isn’t too hard to write, but it is hard to maintain
down the road which contradicts my goal of writing low maintenance software. Still, feedback and pull requests are
very welcome! Please run the style checks and test suite locally before submitting a pull request though – all that this
requires is running tox.

21

https://406.ch/writing/low-maintenance-software/
https://tox.readthedocs.io/

django-translated-fields Documentation, Release 0.12-13-g86a49cc

22 Chapter 10. Other features

CHAPTER 11

Change log

11.1 Next version

• Added Django 4.1 and 4.2 to the CI matrix.

• Added Python 3.11 to the CI matrix.

• Removed the never officially documented way to specify the formfield_callback for modelforms, see
https://code.djangoproject.com/ticket/26456.

• Switched to hatchling and ruff.

11.2 0.12 (2022-04-08)

• BACKWARDS INCOMPATIBLE: Made the field keyword argument to the attrgetter and attrsetter func-
tions mandatory. django-translated-fields raised a deprecation warning if an attrgetter or attrsetter didn’t support
it since 0.8 (released in 2019) so this shouldn’t be a problem for anyone, hopefully.

• Made language_code_formfield_callback preserve the lazyness of the underlying
verbose_name.

• Stopped overwriting language-specific verbose_name values.

• Made translated_attributes fall back to the first entry in settings.LANGUAGESwhen no language
is active. This previously just crashed with an AttributeError (but not caused by non-existant attributes
on the model instance, but caused by the fact that the getter didn’t receive a TranslatedField instance)

• Added Python 3.10, Django 4.0 to the CI.

• Dropped Python < 3.8, Django < 3.2.

• Added pre-commit.

23

https://code.djangoproject.com/ticket/26456

django-translated-fields Documentation, Release 0.12-13-g86a49cc

11.3 0.11 (2021-04-12)

• Changed TranslatedFieldAdmin to not blindly call .render() on all responses, just on those actually
having such an attribute.

• Changed fallback_to_default, fallback_to_any and TranslatedFieldWithFallback to
not fail with an attribute error if no language is active at all.

• Renamed the main branch of the repository to main.

• Switched from Travis CI to GitHub actions.

• Verified compatibility with Python 3.9 and Django 3.2.

• Renamed the main branch to main.

• Switched to a declarative setup (setup.py and setup.cfg).

• Fixed a bug where field ordering was incorrect when overriding the languages list of a translated field with a
list longer than settings.LANGUAGES.

11.4 0.10 (2020-07-27)

• Changed the verbose_name of fields generated by TranslatedField to return the language_code when
inside a with translated_fields.show_language_code(True): block. This change introduces
a dependency on contextvars which is automatically installed from PyPI in Python<3.7.

• Completely overhauled TranslatedFieldAdmin to take advantage of show_language_code, mak-
ing it possible to use translated fields together with list_display_links, list_editable,
readonly_fields etc.

• Dropped compatibility guarantees for Python 3.5.

• Stopped shadowing import errors.

11.5 0.9 (2020-05-14)

• Changed fallback_to_any to also accept the field as an argument, which avoids warnings.

• Added Django 3.1 to the matrix, dropped unmaintained Django versions (all versions < 2.2).

• Fixed a compatibility problem with Django 3.1 by importing FieldDoesNotExist from django.core.
exceptions.

11.6 0.8 (2019-06-26)

• Added an optional field argument to the attrgetter and attrsetter functions.

• Added a utils module intended to contain common applications of translated fields. For now,
TranslatedFieldWithFallback creates a field where all languages but the primary language (the first
language in settings.LANGUAGES resp. the first entry in the languages argument if given) are optional
and and fall back to the field in the primary language if their value is falsy.

• Added a fallback_to_any translated attribute getter which returns either the attribute in the current lan-
guage or in any of the languages.

24 Chapter 11. Change log

https://docs.python.org/3/library/contextvars.html
https://pypi.org/project/contextvars/

django-translated-fields Documentation, Release 0.12-13-g86a49cc

• fallback_to_default and by extension TranslatedFieldWithFallback no longer fall back to
the first entry in settings.LANGUAGES but to the fields’ first language (which is the same except when
overriding the languages list in the TranslatedField instantiation).

• Added a field keyword argument to the attrgetter and attrsetter calls. If an existing custom getter or setter
does not support the argument you’ll get a deprecation warning.

11.7 0.7 (2018-10-17)

• Reused Django’s own machinery for displaying data in the changelist instead of playing catch-up ourselves.

• Moved the list_display_column helper functionality into the TranslatedFieldAdmin class and
made its application automatic as long as you’re not overriding get_list_display.

11.8 0.6 (2018-10-17)

• Added an example and an explanation how to best customize the administration interface when using django-
translated-fields.

• Added Django 2.1 to the Travis CI test matrix (no changes were necessary for compatibility).

• Made pull requests not following the black coding style fail.

• Added the “production/stable” development status trove identifier.

• Dropped Python 3.4 from the build matrix.

• Added a list_display_column helper for showing language codes in column titles.

11.9 0.5 (2018-06-14)

• Replaced the verbose_name_with_language option and the verbose_name mangling it does with
TranslatedFieldAdmin which offers the same functionality, but restricted to the admin interface.

11.10 0.4 (2018-06-14)

• Switched the preferred quote to " and started using black to automatically format Python code.

• Added Python 3.4 to the test matrix.

• Made documentation better.

11.11 0.3 (2018-05-03)

• Added documentation.

• Converted the TranslatedField into a descriptor, and made available a few useful fields on the descriptor
instance.

• Made it possible to set the value of the current language’s field, and added another keyword argument for
replacing the default attrsetter.

11.7. 0.7 (2018-10-17) 25

https://pypi.org/project/black/

django-translated-fields Documentation, Release 0.12-13-g86a49cc

• Made to_attribute fall back to the current language.

• Added exports for to_attribute, translated_attrgetter and translated_attrsetter to
translated_fields.

• Added an attrgetter argument to translated_attributes.

11.12 0.2 (2018-04-30)

• By default the language is appended to the verbose_name of fields created by TranslatedField. Added
the verbose_name_with_language=True parameter to TranslatedField which allows skipping
this behavior.

• Added a languages keyword argument to TranslatedField to allow specifying a different set of
language-specific fields than the default of the settings.LANGUAGES setting.

• Added a attrgetter keyword argument to TranslatedField to replace the default implementation of
language-specific attribute getting.

• Added the possibility to override field keyword arguments for specific languages, e.g. to only make a single
language field mandatory and implement your own fallback via attrgetter.

11.13 0.1 (2018-04-18)

• Initial release!

26 Chapter 11. Change log

	Installation and usage
	Basic usage
	Changing field attributes per language
	Overriding attribute access (defaults, fallbacks)
	TranslatedField instance API
	Using a different set of languages
	Translated attributes without model field creation
	Model admin support
	Forms
	Other features
	Change log
	Next version
	0.12 (2022-04-08)
	0.11 (2021-04-12)
	0.10 (2020-07-27)
	0.9 (2020-05-14)
	0.8 (2019-06-26)
	0.7 (2018-10-17)
	0.6 (2018-10-17)
	0.5 (2018-06-14)
	0.4 (2018-06-14)
	0.3 (2018-05-03)
	0.2 (2018-04-30)
	0.1 (2018-04-18)

