

django-translated-fields

[image: CI Status]
 [https://github.com/matthiask/django-translated-fields/]Django model translation without magic-inflicted pain.

Installation and usage

After installing django-translated-fields in your Python
environment all you have to do is define LANGUAGES in your
settings and add translated fields to your models:

from django.db import models
from django.utils.translation import gettext_lazy as _

from translated_fields import TranslatedField

class Question(models.Model):
 question = TranslatedField(
 models.CharField(_("question"), max_length=200),
)
 answer = TranslatedField(
 models.CharField(_("answer"), max_length=200),
)

 def __str__(self):
 return self.question

Basic usage

Model fields are automatically created from the field passed to
TranslatedField, one field per language. For example, with
LANGUAGES = [("en", "English"), ("de", "German"), ("fr", "French")],
the following list of fields would be created: question_en,
question_de, question_fr, answer_en, answer_de,
and answer_fr.

This implies that when changing LANGUAGES you’ll have to run
makemigrations and migrate too.

No question or answer model field is actually created. The
TranslatedField instance is a descriptor [https://docs.python.org/3/howto/descriptor.html] which by default
acts as a property for the current language’s field:

from django.utils.translation import override

question = Question(
 question_en="How are you?",
 question_de="Wie geht es Dir?",
 question_fr="Ça va?",
)

The default getter automatically returns the value
in the current language:
with override("en"):
 assert question.question == "How are you?"

with override("de"):
 assert question.question == "Wie geht es Dir?"

The default setter can also be used to set the value
in the current language:
with override("fr"):
 question.question = "Comment vas-tu?"

assert question.question_fr == "Comment vas-tu?"

TranslatedField has a fields attribute that returns a list of all
the language fields created.

assert Question.answer.fields == ["answer_en", "answer_de", "answer_fr"]

For more attributes look at the ``TranslatedField`` instance API
section below.

question and answer can only be used with model instances, they
do not exist in the database. If you want to use queryset methods which
reference individual translated fields you have to use language-specific
field names yourself. If you wanted to fetch only the english question
and answer fields you could do this as follows:

questions = Question.objects.values_list("question_en", "answer_en")

Or better yet, using the to_attribute helper which automatically
uses the active language (if you don’t pass a specific language code as
its second argument):

from django.utils.translation import override
from translated_fields import to_attribute

with override("en"):
 questions = Question.objects.values_list(
 to_attribute("question"), to_attribute("answer")
)

Changing field attributes per language

It is sometimes useful to have slightly differing model fields per
language, e.g. for making the primary language mandatory. This can be
achieved by passing a dictionary with keyword arguments per language as
the second positional argument to TranslatedField.

For example, if you add a language to LANGUAGES when a site is
already running, it might be useful to make the new language
non-mandatory to simplify editing already existing data through Django’s
administration interface.

The following example adds blank=True to the spanish field:

from translated_fields import TranslatedField

class Question(models.Model):
 question = TranslatedField(
 models.CharField(_("question"), max_length=200),
 {"es": {"blank": True}},
)

Overriding attribute access (defaults, fallbacks)

There are no default values or fallbacks, only a wrapped attribute
access. The default attribute getter and setter functions simply return
or set the field for the current language (as returned by
django.utils.translation.get_language). The default getter falls
back to the first language of the field in case get_language()
returns None. Apart from that the default getter has no
safetyfeatures and may raise an AttributeError and the setter might
set an attribute on the model instance not related to a model field.

Both getters and setters can be overridden by specifying your own
attrgetter and attrsetter functions. E.g. you may want to
specify a fallback to the default language (and at the same time allow
leaving other languages’ fields empty):

from django.conf import settings
from translated_fields import TranslatedField, to_attribute

def fallback_to_default(name, field):
 def getter(self):
 return getattr(
 self,
 to_attribute(name),
) or getattr(
 self,
 # First language acts as fallback:
 to_attribute(name, settings.LANGUAGES[0][0]),
)
 return getter

class Question(models.Model):
 question = TranslatedField(
 models.CharField(_("question"), max_length=200, blank=True),
 {settings.LANGUAGES[0][0]: {"blank": False}},
 attrgetter=fallback_to_default,
)

Maybe you’re using locales with region codes such as fr-fr where you
want to fall back to the language without a region code. An example
attrgetter implementation follows:

from translated_fields import to_attribute

def fallback_to_all_regions(name, field):
 def getter(self):
 value = getattr(self, to_attribute(name), None)
 if value:
 return value
 return getattr(self, to_attribute(name, get_language().split("-")[0]))

 return getter

A custom attrsetter which always sets all fields follows (probably
not very useful, but hopefully instructive):

def set_all_fields(name, field):
 def setter(self, value):
 for field in field.fields:
 setattr(self, field, value)
 return setter

TranslatedField instance API

The TranslatedField descriptor has a few useful attributes (sticking
with the model and field from the examples above):

	Question.question.fields contains the names of all automatically
generated fields, e.g. ["question_en", "question_...", ...].

	Question.question.languages is the list of language codes.

	Question.question.short_description is set to the verbose_name
of the base field, so that the translatable attribute can be nicely
used e.g. in ModelAdmin.list_display.

Using a different set of languages

It is also possible to override the list of language codes used, for
example if you want to translate a sub- or superset of
settings.LANGUAGES. Combined with attrgetter and attrsetter
there is nothing stopping you from using this field for a different kind
of translations, not necessarily bound to django.utils.translation
or even languages at all.

Translated attributes without model field creation

If model field creation is not desired, you may also use the
translated_attributes class decorator. This only creates the
attribute getter property:

from translated_fields import translated_attributes

@translated_attributes("attribute", "anything", ...)
class Test(object):
 attribute_en = "some value"
 attribute_de = "some other value"

Model admin support

The TranslatedFieldAdmin class adds the respective language to the
label of individual fields. Instead of three fields named “Question”
you’ll get the fields “Question [en]”, “Question [de]” and “Question
[fr]”. It intentionally offers no functionality except for modifying the
label of fields:

from django.contrib import admin
from translated_fields import TranslatedFieldAdmin
from .models import Question

@admin.register(Question)
class QuestionAdmin(TranslatedFieldAdmin, admin.ModelAdmin):
 pass

For inlines:
class SomeInline(TranslatedFieldAdmin, admin.StackedInline):
...

As mentioned above, the fields attribute on the TranslatedField
instance contains the list of generated fields. This may be useful if
you want to customize various aspects of the ModelAdmin subclass. An
example showing various techniques follows:

from django.contrib import admin
from django.utils.translation import gettext_lazy as _
from translated_fields import TranslatedFieldAdmin, to_attribute
from .models import Question

@admin.register(Question)
class QuestionAdmin(TranslatedFieldAdmin, admin.ModelAdmin):
 # Pack question and answer fields into their own fieldsets:
 fieldsets = [
 (_("question"), {"fields": Question.question.fields}),
 (_("answer"), {"fields": Question.answer.fields}),
]

 # Show all fields in the changelist:
 list_display = [
 *Question.question.fields,
 *Question.answer.fields
]

 # Order by current language's question field:
 def get_ordering(self, request):
 return [to_attribute("question")]

Note

It’s strongly recommended to set the verbose_name of fields when
using TranslatedFieldAdmin, the first argument of most model
fields. Otherwise, you’ll get duplicated languages, e.g. “Question en
[en]”.

Forms

django-translated-fields provides a helper when you want form fields’
labels to contain the language code. If this sounds useful to you do
this:

from django import forms
from translated_fields.utils import language_code_formfield_callback
from .models import Question

class QuestionForm(forms.ModelForm):
 formfield_callback = language_code_formfield_callback

 class Meta:
 model = Question
 fields = [
 *Question.question.fields,
 *Question.answer.fields
]

You may also globally configure language code labels to be shown within
a block:

from translated_fields import show_language_code

def view(request):
 form = ...
 with show_language_code(True):
 return render(request, "...", {"form": form})

Please note that the response has to be rendered within the
show_language_code block. This doesn’t happen automatically when
using Django’s TemplateResponse objects.

Other features

There is no support for automatically referencing the current language’s
field in queries or automatically adding fields to admin fieldsets and
whatnot. The code required for these features isn’t too hard to write,
but it is hard to maintain down the road which contradicts my goal of
writing low maintenance software [https://406.ch/writing/low-maintenance-software/]. Still, feedback
and pull requests are very welcome! Please run the style checks and test
suite locally before submitting a pull request though – all that this
requires is running tox [https://tox.readthedocs.io/].

Change log

Next version [https://github.com/matthiask/django-translated-fields/compare/0.12...main]

0.12 [https://github.com/matthiask/django-translated-fields/compare/0.11...0.12] (2022-04-08)

	BACKWARDS INCOMPATIBLE: Made the field keyword argument to the
attrgetter and attrsetter functions mandatory. django-translated-fields
raised a deprecation warning if an attrgetter or attrsetter didn’t support it
since 0.8 (released in 2019) so this shouldn’t be a problem for anyone,
hopefully.

	Made language_code_formfield_callback preserve the lazyness of the
underlying verbose_name.

	Stopped overwriting language-specific verbose_name values.

	Made translated_attributes fall back to the first entry in
settings.LANGUAGES when no language is active. This previously just
crashed with an AttributeError (but not caused by non-existant attributes
on the model instance, but caused by the fact that the getter didn’t receive
a TranslatedField instance)

	Added Python 3.10, Django 4.0 to the CI.

	Dropped Python < 3.8, Django < 3.2.

	Added pre-commit.

0.11 [https://github.com/matthiask/django-translated-fields/compare/0.10...0.11] (2021-04-12)

	Changed TranslatedFieldAdmin to not blindly call .render() on
all responses, just on those actually having such an attribute.

	Changed fallback_to_default, fallback_to_any and
TranslatedFieldWithFallback to not fail with an attribute error if
no language is active at all.

	Renamed the main branch of the repository to main.

	Switched from Travis CI to GitHub actions.

	Verified compatibility with Python 3.9 and Django 3.2.

	Renamed the main branch to main.

	Switched to a declarative setup (setup.py and setup.cfg).

	Fixed a bug where field ordering was incorrect when overriding the
languages list of a translated field with a list longer than
settings.LANGUAGES.

0.10 [https://github.com/matthiask/django-translated-fields/compare/0.9...0.10] (2020-07-27)

	Changed the verbose_name of fields generated by
TranslatedField to return the language_code when inside a
with translated_fields.show_language_code(True): block. This
change introduces a dependency on contextvars [https://docs.python.org/3/library/contextvars.html] which is
automatically installed from PyPI [https://pypi.org/project/contextvars/] in Python<3.7.

	Completely overhauled TranslatedFieldAdmin to take advantage of
show_language_code, making it possible to use translated fields
together with list_display_links, list_editable,
readonly_fields etc.

	Dropped compatibility guarantees for Python 3.5.

	Stopped shadowing import errors.

0.9 [https://github.com/matthiask/django-translated-fields/compare/0.8...0.9] (2020-05-14)

	Changed fallback_to_any to also accept the field as an
argument, which avoids warnings.

	Added Django 3.1 to the matrix, dropped unmaintained Django versions
(all versions < 2.2).

	Fixed a compatibility problem with Django 3.1 by importing
FieldDoesNotExist from django.core.exceptions.

0.8 [https://github.com/matthiask/django-translated-fields/compare/0.7...0.8] (2019-06-26)

	Added an optional field argument to the attrgetter and
attrsetter functions.

	Added a utils module intended to contain common applications of
translated fields. For now, TranslatedFieldWithFallback creates a
field where all languages but the primary language (the first language
in settings.LANGUAGES resp. the first entry in the languages argument
if given) are optional and and fall back to the field in the primary language
if their value is falsy.

	Added a fallback_to_any translated attribute getter which returns
either the attribute in the current language or in any of the
languages.

	fallback_to_default and by extension TranslatedFieldWithFallback no
longer fall back to the first entry in settings.LANGUAGES but to the
fields’ first language (which is the same except when overriding the
languages list in the TranslatedField instantiation).

	Added a field keyword argument to the attrgetter and attrsetter
calls. If an existing custom getter or setter does not support the
argument you’ll get a deprecation warning.

0.7 [https://github.com/matthiask/django-translated-fields/compare/0.6...0.7] (2018-10-17)

	Reused Django’s own machinery for displaying data in the changelist
instead of playing catch-up ourselves.

	Moved the list_display_column helper functionality into the
TranslatedFieldAdmin class and made its application automatic as
long as you’re not overriding get_list_display.

0.6 [https://github.com/matthiask/django-translated-fields/compare/0.5...0.6] (2018-10-17)

	Added an example and an explanation how to best customize the
administration interface when using django-translated-fields.

	Added Django 2.1 to the Travis CI test matrix (no changes were
necessary for compatibility).

	Made pull requests not following the black coding style fail.

	Added the “production/stable” development status trove identifier.

	Dropped Python 3.4 from the build matrix.

	Added a list_display_column helper for showing language codes in
column titles.

0.5 [https://github.com/matthiask/django-translated-fields/compare/0.4...0.5] (2018-06-14)

	Replaced the verbose_name_with_language option and the
verbose_name mangling it does with TranslatedFieldAdmin which
offers the same functionality, but restricted to the admin interface.

0.4 [https://github.com/matthiask/django-translated-fields/compare/0.3...0.4] (2018-06-14)

	Switched the preferred quote to " and started using black [https://pypi.org/project/black/] to automatically format Python
code.

	Added Python 3.4 to the test matrix.

	Made documentation better.

0.3 [https://github.com/matthiask/django-translated-fields/compare/0.2...0.3] (2018-05-03)

	Added documentation.

	Converted the TranslatedField into a descriptor, and made
available a few useful fields on the descriptor instance.

	Made it possible to set the value of the current language’s field, and
added another keyword argument for replacing the default
attrsetter.

	Made to_attribute fall back to the current language.

	Added exports for to_attribute, translated_attrgetter and
translated_attrsetter to translated_fields.

	Added an attrgetter argument to translated_attributes.

0.2 [https://github.com/matthiask/django-translated-fields/compare/0.1...0.2] (2018-04-30)

	By default the language is appended to the verbose_name of
fields created by TranslatedField. Added the
verbose_name_with_language=True parameter to TranslatedField
which allows skipping this behavior.

	Added a languages keyword argument to TranslatedField to allow
specifying a different set of language-specific fields than the default of
the settings.LANGUAGES setting.

	Added a attrgetter keyword argument to TranslatedField to
replace the default implementation of language-specific attribute
getting.

	Added the possibility to override field keyword arguments for specific
languages, e.g. to only make a single language field mandatory and
implement your own fallback via attrgetter.

0.1 [https://github.com/matthiask/django-translated-fields/commit/0710fc8244] (2018-04-18)

	Initial release!

Index

 nav.xhtml

 Table of Contents

 		
 django-translated-fields

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

